post

Масообменни процеси – пренос на маса

Масообменни процеси се наричат тези, при които се наблюдава пренос на дадено количество вещество между две контактуващи среди и преминаването му от едната фаза в другата. Масопреносът се прилага в химическата индустрия, когато се разделят смеси от различни вещества. За целта се използват процесите на адсорбция, абсорбция и дифузия, дестилация и ректификация, екстракция и др.

Фазата е еднородна среда, която често се асоциира с агрегатните състояния, но не е задължително различните фази да са в различно агрегатно състояние. Например смес от вода и олио е течност, но с две отделни ясно отличими фази. Веществата, които съставят дадена фаза се наричат нейни компоненти.

Осъществяването на различните видове масообменни процеси често става с помощта на дифузия или осмоза. Дифузията предствалява самоволно движение на частиците от място с висока тяхна концентрация към място с ниска. Класически пример е наливането на солена вода в сладка, като при това йоните на солта се разпределят равномерно в целия обем на разтворителя.

Ако между солената и сладката вода обаче, се постави полупропусклива мембрана, тогава ще се наблюдава процесът осмоза. При него водните молекули от сладката вода се насочват през мембраната към соления разтвор, за да намалят концентрацията на разтворените частици. Осмотично налягане е … ПРОЧЕТИ ЦЯЛАТА ПУБЛИКАЦИЯ

post

Фосфорна киселина (ортофосфорна киселина)

Фосфорна киселина (ортофосфорна киселина, H3PO4) е химично съединение, което принадлежи към групата на оксокиселините. Тя е неорганична минерална киселина на безцветни кристали със слоест строеж. Температурата ѝ на топене е 42,5°С, а температурата ѝ на кипене е 158°С.

Строеж и свойства

Фосфорната киселина има молекулен строеж. Един централен фосфорен атом се свързва с четири кислородни атома. С първия фосфорът образува двойна връзка, а с останалите единични връзки. Те от своя страна се свързват с по един водороден атом.

Между молекулите на фосфорната киселина, в кристално състояние или стопилка, се образуват водородни връзки. В стопилката протичат процесите на автопротолиза и дехидратация, при което се получават сравнително високи концентрации на йоните:

3H3PO4 ⇌ H4PO4+ + H2P2O72- + H3O+

Водородните връзки се запазват и в концентрираните водни разтвори на фосфорна киселина, което им придава по-голям вискозитет.

Трите водородни атома в киселината са относително подвижни, от което следва, че тя е триосновна. Това означава, че от един мол фосфорна киселина, при дисоциация се отделят три мола водородни катиони. В разреден разтвор тя може да се дисоциира на три степени, но … ПРОЧЕТИ ЦЯЛАТА ПУБЛИКАЦИЯ

post

Химично равновесие. Обратимост на химичните реакции

Химично равновесие се нарича състоянието, при което скоростта на правата реакция е равна на скоростта на обратната реакция. При химично равновесие концентрациите на реагентите и на продуктите остават постоянни в течение на времето и се наричат равновесни концентрации.

Обратимост на химичните реакции

Химична реакция е всяко изменение или взаимодействие на веществата и превръщането им от едно в друго. На теория всяка реакция е обратима, но практически съществуват огромен брой реакции, които са необратими по една или друга причина.

Необратима химична реакция е тази, която протича до край, като всички реагенти (изходни вещества) се превръщат изцяло в продукти (крайни вещества). Те се записват от ляво на дясно както следва: първо реагентите, еднопосочна стрелка сочеща на дясно и накрая реагентите:

CaCO3 + 2HCl → CaCl2 + CO2 + H2O

Обратима химична реакция е тази, при която реагентите не взаимодействат напълно помежду си, дори ако се намират в стехиометрични количества. Причината е, че продуктите също влизат във взаимодействие един с друг и се преобразуват обратно в изходните вещества.

Реакцията на реагентите се означава със стрелка на дясно (→) и се нарича права. Реакцията на продуктите се назовава обратна и се означава със стрелка на ляво (←). … ПРОЧЕТИ ЦЯЛАТА ПУБЛИКАЦИЯ

post

Хидролиза и реакции между разтвори на електролити

Хидролиза е процесът на взаимодействие на йоните на солите в дисоциирано състояние с йоните на водата в разтвора. Той може да се разглежда като обратен на процеса неутрализация.

Неутрализацията от гледна точка на теорията на електролитната дисоциация е реакция между разтвори на електролити – киселина и основа, в резултат на която се получава сол и вода. И още по-кратко казано, взаимодействие между хидроксилните и водородните йони в разтвора.

Реакции между разтвори на електролити

За да се осъществи реакция между разтвори на електролити, необходимо условие е, като продукт да се образува поне един слаб електролит (утайка, газ или вода). Както вече споменахме по-горе, такъв вид реакция е неутрализацията. Тя може да се изрази чрез пълно йонно уравнение или с помощта на съкратено, което представя формирането на слабия електролит, който в случая е вода:

{H+ + Cl} + {Na+ + OH} → {Na+ + Cl} + H2O (пълно йонно уравнение)
H+ OH– → H2O (съкратено йонно уравнение)

Друг вид реакции между разтвори на електролити са тези, при които се получава неразтворима утайка при взаимодействието на йоните в разтвора.

{Ba2+ + 2Cl} … ПРОЧЕТИ ЦЯЛАТА ПУБЛИКАЦИЯ

post

Киселини и основи – електролити. Водороден показател pH

При разтварянето си много съединения се дисоциират на йони, в резултат на което образуват разтвори със специфични свойства. Наличието на водородни/хидроксилни йони в разтвора определя неговата киселинност/основност и количиствено това се представя от т. нар. водороден показател (pH) или съответно хидроксилен показател (pOH). Но дефинирането на понятията киселина и основа може да стане както в контекстта на теорията за електролитна дисоциация на Арениус, така и според протонната теория на Брьонстед – Лаури или електронната теория на Люис.

Киселини

Киселини, от гледна точка на теорията за електролитна дисоциация, са химически съединения, които във воден разтвор или стопилка се дисоциират на водородни катиони и киселинни аниони.

При дисоциацията химичната връзка между водородния атом и киселинния остатък се разкъсва. Броят молове водородни катиони (H+), които се образуват от един мол киселина определя нейната основност. Едноосновна киселина например е солната {1H+ + Cl}, а двуосновна е сярната киселина {2H+ + SO42-}. При дву- и многоосновните киселини електролитната дисоциация протича на етапи.

Водните разтвори на киселините се различават по сила. Разредените киселини реагират с всички метали, които в Реда на относителната активност се намират преди водорода. Индикацията на … ПРОЧЕТИ ЦЯЛАТА ПУБЛИКАЦИЯ

post

Колоидно-дисперсни системи. Колоиди – зол, гел.

Колоиди (колоидно-дисперсни системи) – това са смеси (дисперсни системи) подобни на истинските разтвори, но се различават от тях по размерите на частиците на дисперсната фаза. Прието е големината им да е в порядъка от 1 до 1000 nm, т.е. те представляват или големи молекули, или молекулни агрегати (мицели). Според така зададените си размери, колоидно-дисперсните системи се нареждат между молекулно-дисперсните системи (разтвори) и грубодисперсните системи.

Видове колоиди (колоидно-дисперсни системи)

Колоидно-дисперсните системи са относително стабилни, но са и термодинамично неустойчиви. При диспергирането си в различни по своята природа дисперсни среди, едно вещество може да се разтваря и да се получава истински разтвор или да се формира колоидно-дисперсна система.  Колоидното състояние е характерно за всички вещества.

Съществуват шест основни типа колоидно-дисперсни системи – зол, гел, емулсия, аерозол, твърд зол и пяна.

Зол – представлява течна дисперсна среда и твърда дисперсна фаза (вода/нишесте). Емулсия – това е смес от две несмесващи се течности, силно диспергирани една в друга (прясно мляко, масло/вода). Аерозолът е съставен от дисперсна среда газ и дисперсна фаза течност (мъгла) или твърди частици (дим). Пяната представлява дисперсна фаза газ в дисперсна среда течност (бита сметана) или твърдо вещество (лава,пемза). Гел – това е твърда дисперсна среда и течна … ПРОЧЕТИ ЦЯЛАТА ПУБЛИКАЦИЯ

post

VIIА група (Седма главна подгрупа) – 17 група на ПС

VIIА група (Седма главна подгрупа, 17 група) на Периодичната система включва елементите флуор (F), хлор (Cl), бром (Br), йод (I) и астатий (At). Всички те са известни под общото наименование халогенни елементи (солеобразуващи) и притежават неметален химичен характер.

Названието на флуора произлиза от от гръцкото „флуорос“ – разрушаващ. Имената на следващите 3 елемента означават както следва: хлорос – жълтозелен, бромос – зловоние, йод – виолетов. Названието на астатия, който е радиоактивен, означава нестабилен.

Флуор – VIIА група

Флуорът е най-електроотрицателният химичен елемент (при това не само в VIIА група а въобще), който проявява изключително агресивна химическа природа, по отношение на веществата, с които взаимодейства. Всъщност, само  неонът и хелият не реагират с него. При обикновени условия, той е бледожълт газ с остра миризма и изключителна токсичност.

Флуорът може да се проявява само като окислител при химическите взаимодействия.

Химични свойства на флуора

В негово присъствие, натрият и калият се самозапалват. На въздух, желязото (под формата на желязна вълна) и флуора реагират с буйно изгаряне, но желязно блокче би следвало да се пасивира от новообразуващия се слой железен флуорид и реакцията да спре:

Na + F2 → 2NaF (натриев флуорид)… ПРОЧЕТИ ЦЯЛАТА ПУБЛИКАЦИЯ